Study on the viscoelastic properties of the epoxy surface by means of nanodynamic mechanical analysis
Author(s) -
Zhang YangFei,
Bai ShuLin,
Yang DaYong,
Zhang Zhong,
KaoWalter Sharon
Publication year - 2007
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.21365
Subject(s) - viscoelasticity , materials science , dynamic mechanical analysis , epoxy , composite material , dissipation factor , dynamic modulus , penetration depth , modulus , penetration (warfare) , tangent modulus , dielectric , polymer , optics , mathematics , physics , optoelectronics , operations research
The viscoelastic properties of the epoxy surface have been investigated by nanodynamic mechanical analysis (nano‐DMA). Both a Berkovich tip and a conospherical tip were used under the condition of different forces (i.e., different penetration depths) in the frequency range of 10–200 Hz. Loss tangent and storage modulus are characteristics that describe the viscoelastic properties. The effect of force frequency, penetration depth, and tip shape on the viscoelastic properties is studied and discussed according to the features of microstructures and mobility of molecular chains. The experimental results show important variations when the penetration depth is shallow (<30 nm). As the depth becomes deeper, the results tend to be stable and become almost constant over 120 nm. The two kinds of indenter tip can cause a slight difference of the storage modulus. A “master curve” of the storage modulus as a function of force frequency is established. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 281–288, 2008
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom