z-logo
open-access-imgOpen Access
Solidification of syndiotactic polystyrene by a continuous cooling transformation approach
Author(s) -
La Carrubba V.,
Piccarolo S.,
Brucato V.
Publication year - 2007
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.21254
Subject(s) - tacticity , polystyrene , crystallization , phase (matter) , materials science , amorphous solid , thermodynamics , kinetics , chemical engineering , polymer chemistry , composite material , crystallography , chemistry , polymerization , polymer , organic chemistry , physics , quantum mechanics , engineering
Syndiotactic polystyrene (sPS) was solidified from the melt under drastic conditions according to a continuous cooling transformation methodology developed by the authors, which covered a cooling rate range spanning from approximately 0.03 to 3000 °C/s. The samples produced, structurally homogeneous across both their thickness and surface, were analyzed by macroscopic methods, such as density, wide‐angle X‐ray diffraction (WAXD), and microhardness (MH) measurements. The density was strictly related to the phase content, as confirmed by WAXD deconvolution. The peculiar behavior encountered (the density first decreasing and then increasing with the cooling rate) was attributed to the singularity of the phases formed in sPS; that is, one of the crystalline phases (α) was less dense than the amorphous phase, and the latter, in turn, was less dense than the other crystalline phase (β). With an increasing cooling rate, the thermodynamically stable phase (β) disappeared first, and it was followed by the α phase. On the other hand, the MH values remarkably depended on the amount of the β phase, the α‐phase content influencing the mechanical properties only to a minor extent. The behavior of the crystallization kinetics was described through a modified multiphase Kolmogoroff–Avrami–Evans model for nonisothermal crystallization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 2688–2699, 2007

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom