z-logo
open-access-imgOpen Access
Aligned single‐wall carbon nanotube polymer composites using an electric field
Author(s) -
Park Cheol,
Wilkinson John,
Banda Sumanth,
Ounaies Zoubeida,
Wise Kristopher E.,
Sauti Godfrey,
Lillehei Peter T.,
Harrison Joycelyn S.
Publication year - 2006
Publication title -
journal of polymer science part b: polymer physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.65
H-Index - 145
eISSN - 1099-0488
pISSN - 0887-6266
DOI - 10.1002/polb.20823
Subject(s) - materials science , carbon nanotube , nanocomposite , composite material , composite number , raman spectroscopy , dielectric , polymer , electric field , nanotechnology , optics , optoelectronics , physics , quantum mechanics
While high shear alignment has been shown to improve the mechanical properties of single‐wall carbon nanotube (SWNT)‐polymer composites, this method does not allow for control over the electrical and dielectric properties of the composite and often results in degradation of these properties. Here, we report a novel method to actively align SWNTs in a polymer matrix, which permits control over the degree of alignment of the SWNTs without the side effects of shear alignment. In this process, SWNTs were aligned via AC field‐induced dipolar interactions among the nanotubes in a liquid matrix followed by immobilization by photopolymerization under continued application of the electric field. Alignment of SWNTs was controlled as a function of magnitude, frequency, and application time of the applied electric field. The degree of SWNT alignment was assessed using optical microscopy and polarized Raman spectroscopy, and the morphology of the aligned nanocomposites was investigated by high‐resolution scanning electron microscopy. The structure of the field induced aligned SWNTs was intrinsically different from that of shear aligned SWNTs. In the present work, SWNTs are not only aligned along the field, but also migrate laterally to form thick, aligned SWNT percolative columns between the electrodes. The actively aligned SWNTs amplify the electrical and dielectric properties of the composite. All of these properties of the aligned nanocomposites exhibited anisotropic characteristics, which were controllable by tuning the applied field parameters. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1751–1762, 2006

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom