z-logo
open-access-imgOpen Access
A Cu II ‐Salicylidene Glycinato Complex for the Selective Fluorometric Detection of Homocysteine over 20 Proteinogenic Amino Acids
Author(s) -
Li Xuecong,
Yadav Prerna,
Spingler Bernhard,
Zelder Felix
Publication year - 2022
Publication title -
chemistryopen
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.644
H-Index - 29
ISSN - 2191-1363
DOI - 10.1002/open.202200106
Subject(s) - fluorescence , cysteine , chemistry , amino acid , homocysteine , histidine , analyte , selectivity , glycine , biochemistry , stereochemistry , combinatorial chemistry , chromatography , enzyme , physics , quantum mechanics , catalysis
Homocysteine (Hcy) is a sulfur‐containing α‐amino acid that differs by one methylene (CH 2 ) subunit from homologous cysteine (Cys). Elevated levels of Hcy are diagnostic markers of cardiovascular disease and other medical conditions. We present a new Cu II ‐salicylidene glycinato complex 1 for the selective fluorometric detection of Hcy in water. In the presence of this analyte, the non‐fluorescent copper‐complex demetallates and disassembles into its building blocks. This process liberates a 3‐chloro‐5‐sulfosalicylaldehyde signaling unit and is accompanied by a 51‐fold turn‐on fluorescence at 485 nm (λ ex =350 nm). Out of twenty proteinogenic amino acids, only histidine (12‐fold turn‐on fluorescence) and Cys (8‐fold turn‐on fluorescence) trigger some disassembly of probe 1 . In comparison with important pioneering work on the detection of biothiols, this study strikingly demonstrates that structural modifications of chelate core structures steer substrate selectivity of metal‐based probes. Importantly, probe 1 has proven suitable for the detection of Hcy in artificial urine.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here