Premium
The strong fractional choice number of 3‐choice‐critical graphs
Author(s) -
Xu Rongxing,
Zhu Xuding
Publication year - 2023
Publication title -
journal of graph theory
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.164
H-Index - 54
eISSN - 1097-0118
pISSN - 0364-9024
DOI - 10.1002/jgt.22874
Subject(s) - mathematics , combinatorics , graph , discrete mathematics
A graphG$G$ is called 3‐choice‐critical ifG$G$ is not 2‐choosable but any proper subgraph ofG$G$ is 2‐choosable. A graphG$G$ is strongly fractionalr$r$ ‐choosable ifG$G$ is( a , b )$(a,b)$ ‐choosable for all positive integersa , b$a,b$ for whicha ∕ b ≥ r$a\unicode{x02215}b\ge r$ . The strong fractional choice number ofG$G$ isc h f s ( G ) = inf {r : G$c{h}_{f}^{s}(G)=\text{inf}\{r:G$ is strongly fractionalr$r$ ‐choosable}$\}$ . This paper determines the strong fractional choice number of all 3‐choice‐critical graphs.