
Muscle mass and estimates of renal function: a longitudinal cohort study
Author(s) -
Groothof Dion,
Post Adrian,
PolinderBos Harmke A.,
Erler Nicole S.,
FloresGuerrero Jose L.,
KootstraRos Jenny E.,
Pol Robert A.,
Borst Martin H.,
Gansevoort Ron T.,
Gans Reinold O.B.,
Kremer Daan,
Kieneker Lyanne M.,
Bano Arjola,
Muka Taulant,
Franco Oscar H.,
Bakker Stephan J.L.
Publication year - 2022
Publication title -
journal of cachexia, sarcopenia and muscle
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.803
H-Index - 66
eISSN - 2190-6009
pISSN - 2190-5991
DOI - 10.1002/jcsm.12969
Subject(s) - renal function , creatinine , medicine , cystatin c , urology , body mass index , logistic regression , cohort , endocrinology , linear regression , covariate , statistics , mathematics
Background Creatinine is the most widely used test to estimate the glomerular filtration rate (GFR), but muscle mass as key determinant of creatinine next to renal function may confound such estimates. We explored effects of 24‐h height‐indexed creatinine excretion rate (CER index) on GFR estimated with creatinine (eGFR Cr ), muscle mass‐independent cystatin C (eGFR Cys ), and the combination of creatinine and cystatin C (eGFR Cr‐Cys ) and predicted probabilities of discordant classification given age, sex, and CER index. Methods We included 8076 adults enrolled in the PREVEND study. Discordant classification was defined as not having eGFR Cr <60 mL/min per 1.73 m 2 when eGFR Cys was <60 mL/min/1.73 m 2 . Baseline effects of age and sex on CER index were quantified with linear models using generalized least squares. Baseline effects of CER index on eGFR were quantified with quantile regression and logistic regression. Effects of annual changes in CER index on trajectories of eGFR were quantified with linear mixed‐effects models. Missing observations in covariates were multiply imputed. Results Mean (SD) CER index was 8.0 (1.7) and 6.1 (1.3) mmol/24 h per meter in male and female participants, respectively ( P difference < 0.001). In male participants, baseline CER index increased until 45 years of age followed by a gradual decrease, whereas a gradual decrease across the entire range of age was observed in female participants. For a 70‐year‐old male participant with low muscle mass (CER index of 2 mmol/24 h per meter), predicted baseline eGFR Cr and eGFR Cys disagreed by 24.7 mL/min/1.73 m 2 (and 30.1 mL/min/1.73 m 2 when creatinine was not corrected for race). Percentages (95% CI) of discordant classification in male and female participants aged 60 years and older with low muscle mass were 18.5% (14.8–22.1%) and 15.2% (11.4–18.5%), respectively. For a 70‐year‐old male participant who lost muscle during follow‐up, eGFR Cr and eGFR Cys disagreed by 1.5, 5.0, 8.5, and 12.0 mL/min/1.73 m 2 (and 6.7, 10.7, 13.5, and 15.9 mL/min/1.73 m 2 when creatinine was not corrected for race) at baseline, 5 years, 10 years, and 15 years of follow‐up, respectively. Conclusions Low muscle mass may cause considerable overestimation of single measurements of eGFR Cr . Muscle wasting may cause spurious overestimation of repeatedly measured eGFR Cr . Implementing muscle mass‐independent markers for estimating renal function, like cystatin C as superior alternative to creatinine, is crucial to accurately assess renal function in settings of low muscle mass or muscle wasting. This would also eliminate the negative consequences of current race‐based approaches.