z-logo
Premium
Dynamic interaction networks in modelling and predicting the behaviour of multiple interactive stock markets
Author(s) -
Widiputra Harya,
Pears Russel,
Serguieva Antoaneta,
Kasabov Nikola
Publication year - 2009
Publication title -
intelligent systems in accounting, finance and management
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.846
H-Index - 11
eISSN - 2160-0074
pISSN - 1550-1949
DOI - 10.1002/isaf.300
Subject(s) - computer science , stock (firearms) , stock market , scope (computer science) , econometrics , dynamic network analysis , financial market , economics , finance , engineering , mechanical engineering , paleontology , computer network , horse , biology , programming language
Abstract The behaviour of multiple stock markets can be described within the framework of complex dynamic systems. A representative technique of the framework is the dynamic interaction network (DIN), recently developed in the bioinformatics domain. DINs are capable of modelling dynamic interactions between genes and predicting their future expressions. In this paper, we adopt a DIN approach to extract and model interactions between stock markets. The network is further able to learn online and updates incrementally with the unfolding of the stock market time‐series. The approach is applied to a case study involving 10 market indexes in the Asia Pacific region. The results show that the DIN model reveals important and complex dynamic relationships between stock markets, demonstrating the ability of complex dynamic systems approaches to go beyond the scope of traditional statistical methods. Copyright © 2009 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom