Open Access
Diabetes is accompanied by changes in the levels of proteins involved in endosomal GLUT4 trafficking in obese human skeletal muscle
Author(s) -
Livingstone Rachel,
Bryant Nia J.,
Boyle James G.,
Petrie John R.,
Gould Gwyn W.
Publication year - 2022
Publication title -
endocrinology, diabetes and metabolism
Language(s) - English
Resource type - Journals
ISSN - 2398-9238
DOI - 10.1002/edm2.361
Subject(s) - glut4 , glucose transporter , endocrinology , medicine , intracellular , skeletal muscle , insulin resistance , glucose uptake , type 2 diabetes , insulin , diabetes mellitus , biology , microbiology and biotechnology
Abstract Introduction The regulated delivery of the glucose transporter GLUT4 from intracellular stores to the plasma membrane underpins insulin‐stimulated glucose transport. Insulin‐stimulated glucose transport is impaired in skeletal muscle of patients with type‐2 diabetes, and this may arise because of impaired intracellular trafficking of GLUT4. However, molecular details of any such impairment have not been described. We hypothesized that GLUT4 and/or levels of proteins involved in intracellular GLUT4 trafficking may be impaired in skeletal muscle in type‐2 diabetes and tested this in obese individuals without and without type‐2 diabetes. Methods We recruited 12 participants with type‐2 diabetes and 12 control participants. All were overweight or obese with BMI of 25–45 kg/m 2 . Insulin sensitivity was measured using an insulin suppression test (IST), and vastus lateralis biopsies were taken in the fasted state. Cell extracts were immunoblotted to quantify levels of a range of proteins known to be involved in intracellular GLUT4 trafficking. Results Obese participants with type‐2 diabetes exhibited elevated fasting blood glucose and increased steady state glucose infusion rates in the IST compared with controls. Consistent with this, skeletal muscle from those with type‐2 diabetes expressed lower levels of GLUT4 (30%, p = .014). Levels of Syntaxin4, a key protein involved in GLUT4 vesicle fusion with the plasma membrane, were similar between groups. By contrast, we observed reductions in levels of Syntaxin16 (33.7%, p = 0.05), Sortilin (44%, p = .006) and Sorting Nexin‐1 (21.5%, p = .039) and −27 (60%, p = .001), key proteins involved in the intracellular sorting of GLUT4, in participants with type‐2 diabetes. Conclusions We report significant reductions of proteins involved in the endosomal trafficking of GLUT4 in skeletal muscle in obese people with type 2 diabetes compared with age‐ and weight‐matched controls. These abnormalities of intracellular GLUT4 trafficking may contribute to reduced whole body insulin sensitivity.