z-logo
Premium
Current trends in flow cytometry automated data analysis software
Author(s) -
Cheung Melissa,
Campbell Jonathan J.,
Whitby Liam,
Thomas Robert J.,
Braybrook Julian,
Petzing Jon
Publication year - 2021
Publication title -
cytometry part a
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.316
H-Index - 90
eISSN - 1552-4930
pISSN - 1552-4922
DOI - 10.1002/cyto.a.24320
Subject(s) - computer science , software , population , data mining , identification (biology) , data science , machine learning , medicine , botany , environmental health , biology , programming language
Abstract Automated flow cytometry (FC) data analysis tools for cell population identification and characterization are increasingly being used in academic, biotechnology, pharmaceutical, and clinical laboratories. The development of these computational methods is designed to overcome reproducibility and process bottleneck issues in manual gating, however, the take‐up of these tools remains (anecdotally) low. Here, we performed a comprehensive literature survey of state‐of‐the‐art computational tools typically published by research, clinical, and biomanufacturing laboratories for automated FC data analysis and identified popular tools based on literature citation counts. Dimensionality reduction methods ranked highly, such as generic t‐distributed stochastic neighbor embedding (t‐SNE) and its initial Matlab‐based implementation for cytometry data viSNE. Software with graphical user interfaces also ranked highly, including PhenoGraph, SPADE1, FlowSOM, and Citrus, with unsupervised learning methods outnumbering supervised learning methods, and algorithm type popularity spread across K‐Means, hierarchical, density‐based, model‐based, and other classes of clustering algorithms. Additionally, to illustrate the actual use typically within clinical spaces alongside frequent citations, a survey issued by UK NEQAS Leucocyte Immunophenotyping to identify software usage trends among clinical laboratories was completed. The survey revealed 53% of laboratories have not yet taken up automated cell population identification methods, though among those that have, Infinicyt software is the most frequently identified. Survey respondents considered data output quality to be the most important factor when using automated FC data analysis software, followed by software speed and level of technical support. This review found differences in software usage between biomedical institutions, with tools for discovery, data exploration, and visualization more popular in academia, whereas automated tools for specialized targeted analysis that apply supervised learning methods were more used in clinical settings.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here