z-logo
open-access-imgOpen Access
Dual‐Channel Photostimulation for Independent Excitation of Two Populations
Author(s) -
Hooks Bryan M.
Publication year - 2018
Publication title -
current protocols in neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.307
H-Index - 40
eISSN - 1934-8576
pISSN - 1934-8584
DOI - 10.1002/cpns.52
Subject(s) - photostimulation , optogenetics , channelrhodopsin , neuroscience , neocortex , excitatory postsynaptic potential , opsin , biological neural network , computer science , biology , inhibitory postsynaptic potential , retinal , biochemistry , rhodopsin
Manipulation of defined neurons using excitatory opsins, including channelrhodopsin, enables studies of connectivity and the functional role of these circuit components in the brain. These techniques are vital in the neocortex, where diverse neurons are intermingled, and stimulation of specific cell types is difficult without the spatial, temporal, and genetic control available with optogenetic approaches. Channelrhodopsins are effective for mapping excitatory connectivity from one input type to its target. Attempts to use multiple opsins to simultaneously map multiple inputs face the challenge of partially overlapping light spectra for different opsins. This protocol describes one strategy to independently stimulate two comingled inputs in the same brain area to assess convergence and interaction of pathways in neural circuits. This is highly relevant in the neocortex, where pyramidal neurons integrate excitatory inputs from multiple local cell types and long‐range corticocortical and thalamocortical projections. © 2018 by John Wiley & Sons, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom