
Elimination of Mitochondrial DNA from Mammalian Cells
Author(s) -
Khozhukhar Natalya,
Spadafora Domenico,
Rodriguez Yelitza,
Alexeyev Mikhail
Publication year - 2018
Publication title -
current protocols in cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.149
H-Index - 38
eISSN - 1934-2616
pISSN - 1934-2500
DOI - 10.1002/cpcb.39
Subject(s) - ethidium bromide , mitochondrial dna , microbiology and biotechnology , biology , genotyping , dna , mitochondrion , human mitochondrial genetics , genetics , gene , genotype
To cope with DNA damage, mitochondria developed a pathway by which severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules are abandoned and degraded, and new molecules are resynthesized using intact templates, if available. In this unit, we describe a method that harnesses this pathway to completely eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil‐ N ‐glycosylase (mUNG1). We also provide an alternate protocol for mtDNA depletion using combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC). Support protocols detail approaches for (1) genotyping ρ° cells of human, mouse, and rat origin by PCR; (2) quantitation of mtDNA by quantitative PCR (qPCR); and (3) preparation of calibrator plasmids for mtDNA quantitation. © 2018 by John Wiley & Sons, Inc.