z-logo
open-access-imgOpen Access
Elimination of Mitochondrial DNA from Mammalian Cells
Author(s) -
Khozhukhar Natalya,
Spadafora Domenico,
Rodriguez Yelitza,
Alexeyev Mikhail
Publication year - 2018
Publication title -
current protocols in cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.149
H-Index - 38
eISSN - 1934-2616
pISSN - 1934-2500
DOI - 10.1002/cpcb.39
Subject(s) - ethidium bromide , mitochondrial dna , microbiology and biotechnology , biology , genotyping , dna , mitochondrion , human mitochondrial genetics , genetics , gene , genotype
To cope with DNA damage, mitochondria developed a pathway by which severely damaged or unrepairable mitochondrial DNA (mtDNA) molecules are abandoned and degraded, and new molecules are resynthesized using intact templates, if available. In this unit, we describe a method that harnesses this pathway to completely eliminate mtDNA from mammalian cells by transiently overexpressing the Y147A mutant of human uracil‐ N ‐glycosylase (mUNG1). We also provide an alternate protocol for mtDNA depletion using combined treatment with ethidium bromide (EtBr) and dideoxycytidine (ddC). Support protocols detail approaches for (1) genotyping ρ° cells of human, mouse, and rat origin by PCR; (2) quantitation of mtDNA by quantitative PCR (qPCR); and (3) preparation of calibrator plasmids for mtDNA quantitation. © 2018 by John Wiley & Sons, Inc.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom