Establishing Primary Cultures of Trunk Neural Crest Cells
Author(s) -
Duband JeanLoup,
NekooieMarnany Nioosha,
Dufour Sylvie
Publication year - 2020
Publication title -
current protocols in cell biology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.149
H-Index - 38
eISSN - 1934-2616
pISSN - 1934-2500
DOI - 10.1002/cpcb.109
Subject(s) - neural crest , biology , progenitor cell , stem cell , population , neural stem cell , neuroscience , cell type , microbiology and biotechnology , neurosphere , adult stem cell , embryo , cell , embryonic stem cell , anatomy , genetics , sociology , gene , demography
Neural crest cells constitute a unique population of progenitor cells with extensive stem cell capacities able to navigate throughout various environments in the embryo and are a source of multiple cell types, including neurons, glia, melanocytes, smooth muscles, endocrine cells, cardiac cells, and also skeletal and supportive tissues in the head. Neural crest cells are not restricted to the embryo but persist as well in adult tissues where they provide a reservoir of stem cells with great therapeutic promise. Many fundamental questions in cell, developmental, and stem cell biology can be addressed using this system. During the last decades there has been an increased availability of elaborated techniques, animal models, and molecular tools to tackle neural crest cell development. However, these approaches are often very challenging and difficult to establish and they are not adapted for rapid functional investigations of mechanisms driving cell migration and differentiation. In addition, they are not adequate for collecting pure populations of neural crest cells usable in large scale analyses and for stem cell studies. Transferring and adapting the neural crest system in tissue culture may then represent an attractive alternative, opening up numerous prospects. Here we describe a simple method for establishing primary cultures of neural crest cells derived from trunk neural tubes using the avian embryo as a source of cells. This protocol is suited for producing pure populations of neural crest cells that can be processed for cytological, cellular, and functional approaches aimed at characterizing their phenotype, behavior, and potential. © 2020 Wiley Periodicals LLC. Basic Protocol : Primary cultures of avian trunk neural crest cells Support Protocol : Adaptations for immunofluorescence labeling and videomicroscopy
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom