Premium
Better experimental design by hybridizing binary matching with imbalance optimization
Author(s) -
Krieger Abba M.,
Azriel David A.,
Kapelner Adam
Publication year - 2023
Publication title -
canadian journal of statistics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.804
H-Index - 51
eISSN - 1708-945X
pISSN - 0319-5724
DOI - 10.1002/cjs.11685
Subject(s) - covariate , estimator , extant taxon , robustness (evolution) , matching (statistics) , nonlinear system , computer science , set (abstract data type) , heuristic , binary number , statistics , design of experiments , optimal design , mathematics , mean squared error , algorithm , mathematical optimization , biochemistry , chemistry , physics , arithmetic , quantum mechanics , evolutionary biology , biology , gene , programming language
We present a new experimental design procedure that divides a set of experimental units into two groups in order to minimize error in estimating a treatment effect. One concern is the elimination of large covariate imbalance between the two groups before the experiment begins. Another concern is robustness of the design to misspecification in response models. We address both concerns in our proposed design: we first place subjects into pairs using optimal nonbipartite matching, making our estimator robust to complicated nonlinear response models. Our innovation is to keep the matched pairs extant, take differences of the covariate values within each matched pair, and then use the greedy switching heuristic of Krieger et al. (2019) or rerandomization on these differences. This latter step greatly reduces covariate imbalance. Furthermore, our resultant designs are shown to be nearly as random as matching, which is robust to unobserved covariates. When compared to previous designs, our approach exhibits significant improvement in the mean squared error of the treatment effect estimator when the response model is nonlinear and performs at least as well when the response model is linear. Our design procedure can be found as a method in the open source R package available on CRAN called GreedyExperimentalDesign .