z-logo
open-access-imgOpen Access
Identification of membrane proteins in the hyperthermophilic archaeon Pyrococcus furiosus using proteomics and prediction programs
Author(s) -
Holden James F.,
Poole Farris L.,
Tollaksen Sandra L.,
Giometti Carol S.,
Lim Hanjo,
Yates John R.,
Adams Michael W. W.
Publication year - 2001
Publication title -
comparative and functional genomics
Language(s) - English
Resource type - Journals
eISSN - 1532-6268
pISSN - 1531-6912
DOI - 10.1002/cfg.110
Subject(s) - pyrococcus furiosus , membrane protein , cytoplasm , biology , transmembrane protein , biochemistry , cell membrane , protein subunit , membrane , archaea , gene , receptor
Abstract Cell‐free extracts from the hyperthermophilic archaeon Pyrococcus furiosus were separated into membrane and cytoplasmic fractions and each was analyzed by 2D‐gel electrophoresis. A total of 66 proteins were identified, 32 in the membrane fraction and 34 in the cytoplasmic fraction. Six prediction programs were used to predict the subcellular locations of these proteins. Three were based on signal‐peptides (SignalP, TargetP, and SOSUISignal) and three on transmembrane‐spanning α‐helices (TSEG, SOSUI, and PRED‐TMR2). A consensus of the six programs predicted that 23 of the 32 proteins (72%) from the membrane fraction should be in the membrane and that all of the proteins from the cytoplasmic fraction should be in the cytoplasm. Two membrane‐associated proteins predicted to be cytoplasmic by the programs are also predicted to consist primarily of transmembrane‐spanning β‐sheets using porin protein models, suggesting that they are, in fact, membrane components. An ATPase subunit homolog found in the membrane fraction, although predicted to be cytoplasmic, is most likely complexed with other ATPase subunits in the membrane fraction. An additional three proteins predicted to be cytoplasmic but found in the membrane fraction, may be cytoplasmic contaminants. These include a chaperone homolog that may have attached to denatured membrane proteins during cell fractionation. Omitting these three proteins would boost the membrane‐protein predictability of the models to near 80%. A consensus prediction using all six programs for all 2242 ORFs in the P. furiosus genome estimates that 24% of the ORF products are found in the membrane. However, this is likely to be a minimum value due to the programs' inability to recognize certain membrane‐related proteins, such as subunits associated with membrane complexes and porin‐type proteins. Copyright © 2001 John Wiley & Sons, Ltd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here