Open Access
Bayesian imputation of non‐chosen attribute values in revealed preference surveys
Author(s) -
Washington Simon,
Ravulaparthy Srinath,
Rose John M.,
Hensher David,
Pendyala Ram
Publication year - 2014
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1002/atr.201
Subject(s) - imputation (statistics) , bayesian probability , statistics , preference , econometrics , computer science , data mining , mathematics , missing data
SUMMARY Obtaining attribute values of non‐chosen alternatives in a revealed preference context is challenging because non‐chosen alternative attributes are unobserved by choosers, chooser perceptions of attribute values may not reflect reality, existing methods for imputing these values suffer from shortcomings, and obtaining non‐chosen attribute values is resource intensive. This paper presents a unique Bayesian (multiple) Imputation Multinomial Logit model that imputes unobserved travel times and distances of non‐chosen travel modes based on random draws from the conditional posterior distribution of missing values. The calibrated Bayesian (multiple) Imputation Multinomial Logit model imputes non‐chosen time and distance values that convincingly replicate observed choice behavior. Although network skims were used for calibration, more realistic data such as supplemental geographically referenced surveys or stated preference data may be preferred. The model is ideally suited for imputing variation in intrazonal non‐chosen mode attributes and for assessing the marginal impacts of travel policies, programs, or prices within traffic analysis zones. Copyright © 2012 John Wiley & Sons, Ltd.