Zipfian and Lotkaian continuous concentration theory
Author(s) -
Egghe L.
Publication year - 2005
Publication title -
journal of the american society for information science and technology
Language(s) - English
Resource type - Journals
eISSN - 1532-2890
pISSN - 1532-2882
DOI - 10.1002/asi.20186
Subject(s) - zipf's law , lorenz curve , gini coefficient , power law , law , exponent , mathematics , statistical physics , power (physics) , mathematical economics , statistics , mathematical analysis , inequality , physics , thermodynamics , political science , economic inequality , linguistics , philosophy
In this article concentration (i.e., inequality) aspects of the functions of Zipf and of Lotka are studied. Since both functions are power laws (i.e., they are mathematically the same) it suffices to develop one concentration theory for power laws and apply it twice for the different interpretations of the laws of Zipf and Lotka. After a brief repetition of the functional relationships between Zipf's law and Lotka's law, we prove that Price's law of concentration is equivalent with Zipf's law. A major part of this article is devoted to the development of continuous concentration theory, based on Lorenz curves. The Lorenz curve for power functions is calculated and, based on this, some important concentration measures such as the ones of Gini, Theil, and the variation coefficient. Using Lorenz curves, it is shown that the concentration of a power law increases with its exponent and this result is interpreted in terms of the functions of Zipf and Lotka.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom