
Methotrexate increases expression of cell cycle checkpoint genes via JNK activation
Author(s) -
Spurlock Charles F.,
Tossberg John T.,
Fuchs Howard A.,
Olsen Nancy J.,
Aune Thomas M.
Publication year - 2012
Publication title -
arthritis & rheumatism
Language(s) - English
Resource type - Journals
eISSN - 1529-0131
pISSN - 0004-3591
DOI - 10.1002/art.34342
Subject(s) - cell cycle , cell cycle checkpoint , apoptosis , kinase , cancer research , gene expression , intracellular , microbiology and biotechnology , biology , chemistry , gene , biochemistry
Objective To assess defects in expression of critical cell cycle checkpoint genes and proteins in patients with rheumatoid arthritis (RA) relative to presence or absence of methotrexate (MTX) treatment, and to investigate the role of JNK in induction of these genes by MTX. Methods Flow cytometric analysis was used to quantify changes in levels of intracellular proteins, measure reactive oxygen species (ROS), and determine apoptosis in different lymphoid populations. Quantitative reverse transcription–polymerase chain reaction was used to identify changes in cell cycle checkpoint target genes. Results RA patients expressed reduced baseline levels of MAPK9 , TP53, CDKN1A, CDKN1B , CHEK2 , and RANGAP1 messenger RNA (mRNA) and JNK total protein. The reduction in expression of mRNA for MAPK9 , TP53 , CDKN1A , and CDKN1B was greater in patients not receiving MTX than in those receiving low‐dose MTX, with no difference in expression levels of CHEK2 and RANGAP1 mRNA between MTX‐treated and non–MTX‐treated patients. Further, JNK levels were inversely correlated with C‐reactive protein levels in RA patients. In tissue culture, MTX induced expression of both p53 and p21 by JNK‐2– and JNK‐1–dependent mechanisms, respectively, while CHEK2 and RANGAP1 were not induced by MTX. MTX also induced ROS production, JNK activation, and sensitivity to apoptosis in activated T cells. Supplementation with tetrahydrobiopterin blocked these MTX‐mediated effects. Conclusion Our findings support the notion that MTX restores some, but not all, of the proteins contributing to cell cycle checkpoint deficiencies in RA T cells, via a JNK‐dependent pathway.