z-logo
Premium
Progress on Emerging Ferroelectric Materials for Energy Harvesting, Storage and Conversion
Author(s) -
Wei XianKui,
Domingo Neus,
Sun Young,
Balke Nina,
DuninBorkowski Rafal E.,
Mayer Joachim
Publication year - 2022
Publication title -
advanced energy materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.08
H-Index - 220
eISSN - 1614-6840
pISSN - 1614-6832
DOI - 10.1002/aenm.202201199
Subject(s) - ferroelectricity , materials science , polarization (electrochemistry) , engineering physics , energy transformation , optoelectronics , nanotechnology , piezoelectricity , ionic bonding , electric potential energy , energy (signal processing) , dielectric , physics , ion , chemistry , quantum mechanics , composite material , thermodynamics
Abstract Since the discovery of Rochelle salt a century ago, ferroelectric materials have been investigated extensively due to their robust responses to electric, mechanical, thermal, magnetic, and optical fields. These features give rise to a series of ferroelectric‐based modern device applications such as piezoelectric transducers, memories, infrared detectors, nonlinear optical devices, etc. On the way to broaden the material systems, for example, from three to two dimensions, new phenomena of topological polarity, improper ferroelectricity, magnetoelectric effects, and domain wall nanoelectronics bear the hope for next‐generation electronic devices. In the meantime, ferroelectric research has been aggressively extended to more diverse applications such as solar cells, water splitting, and CO 2 reduction. In this review, the most recent research progress on newly emerging ferroelectric states and phenomena in insulators, ionic conductors, and metals are summarized, which have been used for energy storage, energy harvesting, and electrochemical energy conversion. Along with the intricate coupling between polarization, coordination, defect, and spin state, the exploration of transient ferroelectric behavior, ionic migration, polarization switching dynamics, and topological ferroelectricity, sets up the physical foundation ferroelectric energy research. Accordingly, the progress in understanding of ferroelectric physics is expected to provide insightful guidance on the design of advanced energy materials.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here