z-logo
open-access-imgOpen Access
Structurally Colored Radiative Cooling Cellulosic Films
Author(s) -
Zhu Wenkai,
Droguet Benjamin,
Shen Qingchen,
Zhang Yun,
Parton Thomas G.,
Shan Xiwei,
Parker Richard M.,
De Volder Michael F. L.,
Deng Tao,
Vignolini Silvia,
Li Tian
Publication year - 2022
Publication title -
advanced science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 5.388
H-Index - 100
ISSN - 2198-3844
DOI - 10.1002/advs.202202061
Subject(s) - materials science , radiative cooling , optoelectronics , coating , absorption (acoustics) , radiative transfer , nanostructure , reflection (computer programming) , optics , nanotechnology , composite material , computer science , physics , thermodynamics , programming language
Daytime radiative cooling (DRC) materials offer a sustainable approach to thermal management by exploiting net positive heat transfer to deep space. While such materials typically have a white or mirror‐like appearance to maximize solar reflection, extending the palette of available colors is required to promote their real‐world utilization. However, the incorporation of conventional absorption‐based colorants inevitably leads to solar heating, which counteracts any radiative cooling effect. In this work, efficient sub‐ambient DRC (Day: −4 °C, Night: −11 °C) from a vibrant, structurally colored film prepared from naturally derived cellulose nanocrystals (CNCs), is instead demonstrated. Arising from the underlying photonic nanostructure, the film selectively reflects visible light resulting in intense, fade‐resistant coloration, while maintaining a low solar absorption (≈3%). Additionally, a high emission within the mid‐infrared atmospheric window (>90%) allows for significant radiative heat loss. By coating such CNC films onto a highly scattering, porous ethylcellulose (EC) base layer, any sunlight that penetrates the CNC layer is backscattered by the EC layer below, achieving broadband solar reflection and vibrant structural color simultaneously. Finally, scalable manufacturing using a commercially relevant roll‐to‐roll process validates the potential to produce such colored radiative cooling materials at a large scale from a low‐cost and sustainable feedstock.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here