z-logo
open-access-imgOpen Access
Pacific‐Atlantic Circumpolar Deep Water coupling during the last 500 ka
Author(s) -
Ullermann Johannes,
Lamy Frank,
Ninnemann Ulysses,
LembkeJene Lester,
Gersonde Rainer,
Tiedemann Ralf
Publication year - 2016
Publication title -
paleoceanography
Language(s) - English
Resource type - Journals
eISSN - 1944-9186
pISSN - 0883-8305
DOI - 10.1002/2016pa002932
Subject(s) - circumpolar deep water , geology , oceanography , antarctic bottom water , north atlantic deep water , interglacial , water mass , glacial period , antarctic intermediate water , stadial , abyssal zone , paleoceanography , circumpolar star , thermohaline circulation , paleontology , holocene
Investigating the interbasin deepwater exchange between the Pacific and Atlantic Oceans over glacial‐interglacial climate cycles is important for understanding circum‐Antarctic Southern Ocean circulation changes and their impact on the global Meridional Overturning Circulation. We use benthic foraminiferal δ 13 C records from the southern East Pacific Rise to characterize the δ 13 C composition of Circumpolar Deep Water in the South Pacific, prior to its transit through the Drake Passage into the South Atlantic. A comparison with published South Atlantic deepwater records from the northern Cape Basin suggests a continuous water mass exchange throughout the past 500 ka. Almost identical glacial‐interglacial δ 13 C variations imply a common deepwater evolution in both basins suggesting persistent Circumpolar Deep Water exchange and homogenization. By contrast, deeper abyssal waters occupying the more southern Cape Basin and the southernmost South Atlantic have lower δ 13 C values during most, but not all, stadial periods. We conclude that these values represent the influence of a more southern water mass, perhaps Antarctic Bottom Water (AABW). During many interglacials and some glacial periods, the gradient between Circumpolar Deep Water and the deeper southern Cape Basin bottom water disappears suggesting either no presence of AABW or indistinguishable δ 13 C values of both water masses.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here