
Anterograde or Retrograde Transsynaptic Circuit Tracing in Vertebrates with Vesicular Stomatitis Virus Vectors
Author(s) -
Beier Kevin T.,
Mundell Nathan A.,
Pan Y. Albert,
Cepko Constance L.
Publication year - 2016
Publication title -
current protocols in neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.307
H-Index - 40
eISSN - 1934-8576
pISSN - 1934-8584
DOI - 10.1002/0471142301.ns0126s74
Subject(s) - biology , vesicular stomatitis virus , virus , virology , vector (molecular biology) , rabies virus , viral envelope , rhabdoviridae , glycoprotein , viral replication , microbiology and biotechnology , recombinant dna , gene , genetics
Viruses have been used as transsynaptic tracers, allowing one to map the inputs and outputs of neuronal populations, due to their ability to replicate in neurons and transmit in vivo only across synaptically connected cells. To date, their use has been largely restricted to mammals. In order to explore the use of such viruses in an expanded host range, we tested the transsynaptic tracing ability of recombinant vesicular stomatitis virus (rVSV) vectors in a variety of organisms. Successful infection and gene expression were achieved in a wide range of organisms, including vertebrate and invertebrate model organisms. Moreover, rVSV enabled transsynaptic tracing of neural circuitry in predictable directions dictated by the viral envelope glycoprotein (G), derived from either VSV or rabies virus (RABV). Anterograde and retrograde labeling, from initial infection and/or viral replication and transmission, was observed in Old and New World monkeys, seahorses, jellyfish, zebrafish, chickens, and mice. These vectors are widely applicable for gene delivery, afferent tract tracing, and/or directional connectivity mapping. Here, we detail the use of these vectors and provide protocols for propagating virus, changing the surface glycoprotein, and infecting multiple organisms using several injection strategies. © 2016 by John Wiley & Sons, Inc.