
Use of CID/ETD Mass Spectrometry to Analyze Glycopeptides
Author(s) -
Mechref Yehia
Publication year - 2012
Publication title -
current protocols in protein science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.409
H-Index - 32
eISSN - 1934-3663
pISSN - 1934-3655
DOI - 10.1002/0471140864.ps1211s68
Subject(s) - mass spectrometry , glycopeptide , chemistry , chromatography , biochemistry , antibiotics
Collision‐induced dissociation (CID) tandem mass spectrometry (MS/MS) does not allow the characterization of glycopeptides because of the fragmentation of glycan structures and limited fragmentation of peptide backbones. Electron transfer dissociation (ETD) MS/MS, on the other hand, offers a complementary approach, prompting only peptide backbone fragmentation while keeping post‐translational modifications intact. Characterization of glycopeptides using both CID and ETD is summarized in this unit. While CID provides information related to the composition of glycan moieties attached to a peptide backbone, ETD permits de novo sequencing of peptides. Radical anion transfer of electrons to the peptide backbone in ETD induces cleavage of the N‐Cα bond. The glycan moiety is retained on the peptide backbone, largely unaffected by the ETD process, thus allowing the identification of the amino acid sequence of a glycopeptide and its glycosylation site. This unit discusses the use of both CID and ETD for better characterization of glycopeptides. Curr. Protoc. Protein Sci . 68:12.11.1‐12.11.11. © 2012 by John Wiley & Sons, Inc.