z-logo
open-access-imgOpen Access
Structural shielding design of a 6 MV flattening filter free linear accelerator: Indian scenario
Author(s) -
Bibekananda Mishra,
T. Palani Selvam,
PK Dash Sharma
Publication year - 2017
Publication title -
journal of medical physics/journal of medical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.292
H-Index - 24
eISSN - 1998-3913
pISSN - 0971-6203
DOI - 10.4103/jmp.jmp_99_16
Subject(s) - linear particle accelerator , electromagnetic shielding , flattening , physics , materials science , optics , nuclear medicine , beam (structure) , medicine , quantum mechanics , astronomy
Detailed structural shielding of primary and secondary barriers for a 6 MV medical linear accelerator (LINAC) operated with flattening filter (FF) and flattening filter free (FFF) modes are calculated. The calculations have been carried out by two methods, one using the approach given in National Council on Radiation Protection (NCRP) Report No. 151 and the other based on the monitor units (MUs) delivered in clinical practice. Radiation survey of the installations was also carried out. NCRP approach suggests that the primary and secondary barrier thicknesses are higher by 24% and 26%. respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes with an assumption that only 20% of the workload is shared in FFF mode. Primary and secondary barrier thicknesses calculated from MUs delivered on clinical practice method also show the same trend and are higher by 20% and 19%, respectively, for a LINAC operated in FF mode to that of a LINAC operated in both FF and FFF modes. Overall, the barrier thickness for a LINAC operated in FF mode is higher about 20% to that of a LINAC operated in both FF and FFF modes.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here