z-logo
open-access-imgOpen Access
Extracellular vesicle-based therapy for amyotrophic lateral sclerosis
Author(s) -
Nadia Sadanandan,
Jea-Young Lee,
Svitlana GarbuzovaDavis
Publication year - 2021
Publication title -
brain circulation
Language(s) - English
Resource type - Journals
eISSN - 2455-4626
pISSN - 2394-8108
DOI - 10.4103/bc.bc_9_21
Subject(s) - amyotrophic lateral sclerosis , blood–brain barrier , medicine , progenitor cell , stem cell , extracellular vesicle , motor neuron , neuroscience , central nervous system , immunology , spinal cord , biology , pathology , microbiology and biotechnology , microvesicles , microrna , biochemistry , disease , gene
Amyotrophic lateral sclerosis (ALS) stands as a neurodegenerative disorder characterized by the rapid progression of motor neuron loss in the brain and spinal cord. Unfortunately, treatment options for ALS are limited, and therefore, novel therapies that prevent further motor neuron degeneration are of dire need. In ALS, the infiltration of pathological elements from the blood to the central nervous system (CNS) compartment that spur motor neuron damage may be prevented via restoration of the impaired blood-CNS-barrier. Transplantation of human bone marrow endothelial progenitor cells (hBM-EPCs) demonstrated therapeutic promise in a mouse model of ALS due to their capacity to mitigate the altered blood-CNS-barrier by restoring endothelial cell (EC) integrity. Remarkably, the hBM-EPCs can release angiogenic factors that endogenously ameliorate impaired ECs. In addition, these cells may produce extracellular vesicles (EVs) that carry a wide range of vesicular factors, which aid in alleviating EC damage. In an in vitro study, hBM-EPC-derived EVs were effectively uptaken by the mouse brain endothelial cells (mBECs) and cell damage was significantly attenuated. Interestingly, the incorporation of EVs into mBECs was inhibited via β1 integrin hindrance. This review explores preclinical studies of the therapeutic potential of hBM-EPCs, specifically via hBM-EPC-derived EVs, for the repair of the damaged blood-CNS-barrier in ALS as a novel treatment approach.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here