Open Access
Added value of shear-wave elastography in the prediction of extracapsular extension and seminal vesicle invasion before radical prostatectomy
Author(s) -
LiHua Xiang,
HuiXiong Xu,
Yi-Kang Sun,
Yang Yu,
Gelin Xu,
Jian Wu,
Yunyun Liu,
Shuai Wang,
Dongxin Lin
Publication year - 2023
Publication title -
asian journal of andrology/asian journal of andrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.701
H-Index - 74
eISSN - 1745-7262
pISSN - 1008-682X
DOI - 10.4103/aja202256
Subject(s) - medicine , prostatectomy , receiver operating characteristic , magnetic resonance imaging , prostate cancer , pathological , urology , seminal vesicle , nuclear medicine , prostate , radiology , pathology , cancer
The purpose of this study was to analyze the value of transrectal shear-wave elastography (SWE) in combination with multivariable tools for predicting adverse pathological features before radical prostatectomy (RP). Preoperative clinicopathological variables, multiparametric magnetic resonance imaging (mp-MRI) manifestations, and the maximum elastic value of the prostate (Emax) on SWE were retrospectively collected. The accuracy of SWE for predicting adverse pathological features was evaluated based on postoperative pathology, and parameters with statistical significance were selected. The diagnostic performance of various models, including preoperative clinicopathological variables (model 1), preoperative clinicopathological variables + mp-MRI (model 2), and preoperative clinicopathological variables + mp-MRI + SWE (model 3), was evaluated with area under the receiver operator characteristic curve (AUC) analysis. Emax was significantly higher in prostate cancer with extracapsular extension (ECE) or seminal vesicle invasion (SVI) with both P < 0.001. The optimal cutoff Emax values for ECE and SVI were 60.45 kPa and 81.55 kPa, respectively. Inclusion of mp-MRI and SWE improved discrimination by clinical models for ECE (model 2 vs model 1, P = 0.031; model 3 vs model 1, P = 0.002; model 3 vs model 2, P = 0.018) and SVI (model 2 vs model 1, P = 0.147; model 3 vs model 1, P = 0.037; model 3 vs model 2, P = 0.134). SWE is valuable for identifying patients at high risk of adverse pathology.