Open Access
Distribution of DNA damage in the human sperm nucleus: implications of the architecture of the sperm head
Author(s) -
Silvia González-Rojo,
Cristina Fernández-Díez,
Marta Lombó,
M.P. Herráez
Publication year - 2020
Publication title -
asian journal of andrology/asian journal of andrology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.701
H-Index - 74
eISSN - 1745-7262
pISSN - 1008-682X
DOI - 10.4103/aja.aja_26_19
Subject(s) - chromatin , sperm , biology , dna damage , histone , microbiology and biotechnology , genetics , dna
The sperm nucleus is prone to sustain DNA damage before and after ejaculation. Distribution of the damage is not homogeneous, and the factors determining differential sensitivity among nuclear regions have not yet been characterized. Human sperm chromatin contains three structural domains, two of which are considered the most susceptible to DNA damage: the histone bound domain, harboring developmental related genes, and the domain associated with nuclear matrix proteins. Using a quantitative polymerase chain reaction (qPCR) approach, we analyzed the number of lesions in genes homeobox A3 (HOXA3), homeobox B5 (HOXB 5), sex-determining region Y (SRY)-box 2 (SOX2), β-GLOBIN, rDNA 18S, and rDNA 28S in human sperm after ultraviolet irradiation (400 μW cm -2 , 10 min), H 2 O 2 treatment (250 mmol l -1 , 20 min), and cryopreservation, which showed differential susceptibility to genetic damage. Differential vulnerability is dependent on the genotoxic agent and independent of the sperm nuclear proteins to which the chromatin is bound and of accessibility to the transcription machinery. Immunodetection of 8-hydroxy-2'-deoxyguanosine (8-OHdG) showed that the highest level of oxidation was observed after H 2 O 2 treatment. The distribution of oxidative lesions also differed depending on the genotoxic agent. 8-OHdG did not colocalize either with histone 3 (H3) or with type IIα + β topoisomerase (TOPO IIα + β) after H 2 O 2 treatment but matched perfectly with peroxiredoxin 6 (PRDX6), which is involved in H 2 O 2 metabolism. Our study reveals that the characteristics of the sperm head domains are responsible for access of the genotoxicants and cause differential degree of damage to nuclear areas, whereas chromatin packaging has a very limited relevance. The histone-enriched genes analyzed cannot be used as biomarkers of oxidative DNA damage.