Open Access
Navigating the dynamic landscape of alpha-synuclein morphology: a review of the physiologically relevant tetrameric conformation
Author(s) -
Heather R. Lucas,
Ricardo D. Fernández
Publication year - 2020
Publication title -
neural regeneration research/neural regeneration research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.93
H-Index - 38
eISSN - 1876-7958
pISSN - 1673-5374
DOI - 10.4103/1673-5374.265792
Subject(s) - tetramer , alpha synuclein , protein folding , energy landscape , biophysics , protein aggregation , synucleinopathies , protein quaternary structure , folding (dsp implementation) , chemistry , protein structure , computational biology , neuroscience , biology , biochemistry , parkinson's disease , protein subunit , medicine , disease , enzyme , pathology , gene , electrical engineering , engineering
N-acetylated α-synuclein (αSyn) has long been established as an intrinsically disordered protein associated with a dysfunctional role in Parkinson's disease. In recent years, a physiologically relevant, higher order conformation has been identified as a helical tetramer that is tailored by buried hydrophobic interactions and is distinctively aggregation resistant. The canonical mechanism by which the tetramer assembles remains elusive. As novel biochemical approaches, computational methods, pioneering purification platforms, and powerful imaging techniques continue to develop, puzzling information that once sparked debate as to the veracity of the tetramer has now shed light upon this new counterpart in αSyn neurobiology. Nuclear magnetic resonance and computational studies on multimeric αSyn structure have revealed that the protein folding propensity is controlled by small energy barriers that enable large scale reconfiguration. Alternatively, familial mutations ablate tetramerization and reconfigure polymorphic fibrillization. In this review, we will discuss the dynamic landscape of αSyn quaternary structure with a focus on the tetrameric conformation.