
MKP‑1 overexpression is associated with chemoresistance in bladder cancer via the MAPK pathway
Author(s) -
Siyu Lei,
Hao Xu,
Naiwen Chen,
Hui Pan,
Weiqing Xie,
Yi He,
Jing Jin
Publication year - 2020
Publication title -
oncology letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.766
H-Index - 54
eISSN - 1792-1082
pISSN - 1792-1074
DOI - 10.3892/ol.2020.11741
Subject(s) - oncogene , molecular medicine , cancer , cancer research , cell cycle , bladder cancer , apoptosis , mapk/erk pathway , medicine , biology , oncology , signal transduction , microbiology and biotechnology , genetics
Mitogen activated protein kinase phosphatase-1 (MKP-1) has been revealed to be overexpressed in bladder cancer, particularly in non-muscle invasive bladder cancer. MKP-1 may also be associated with chemotherapy resistance. However, the underlying mechanism is yet to be elucidated. The current study investigated the expression of MKP-1 by performing immunohistochemistry in surgically resected specimens obtained from primary and recurrent patients with bladder cancer. The results revealed that MKP-1 expression increased in recurrent patients. Additionally, a 3D model of the human bladder cancer cell line, RT112, was established to determine the role of MKP-1 in drug resistance. The results demonstrated that MKP-1 overexpression protected bladder cancer cells against cell death. Contrarily, MKP-1 knockdown was revealed to sensitize cells to death. In addition, the application of MAPK inhibitors effectively increased RT112 cell sensitivity to pirarubicin. In conclusion, the results of the current study indicated that MKP-1 treatment resulted in bladder cancer cell chemoresistance via JNK, ERK and p38 pathways. MKP-1 may also serve as a potential therapeutic target for chemoresistance in patients with bladder cancer.