
Circular RNA_101237 mediates anoxia/reoxygenation injury by targeting let‑7a‑5p/IGF2BP3 in cardiomyocytes
Author(s) -
Jianting Gan,
Jun Yuan,
Yü Liu,
Zhengde Lu,
Yan Xue,
Lei Shi,
Hanmin Zeng
Publication year - 2019
Publication title -
international journal of molecular medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.048
H-Index - 90
eISSN - 1791-244X
pISSN - 1107-3756
DOI - 10.3892/ijmm.2019.4441
Subject(s) - autophagy , gene knockdown , circular rna , downregulation and upregulation , apoptosis , microbiology and biotechnology , cancer research , programmed cell death , chemistry , biology , biochemistry , gene
Circular RNAs (circRNAs) serve important roles in cardiovascular diseases, including myocardial infarction. However, the mechanisms underlying the roles of circRNAs in cardiomyocyte death induced by anoxia/reoxygenation (A/R) are not fully understood. In the present study, the roles of circRNA_101237 and let‑7a‑5p in cardiomyocyte death induced by A/R injury were investigated. It was identified that circRNA_101237 was induced by A/R injury in a time‑dependent manner and that circRNA_101237 knockdown protected cardiomyocytes from A/R‑mediated apoptosis. Additional mechanistic studies revealed that circRNA_101237 served as a sponge for let‑7a‑5p, subsequently regulating insulin‑like growth factor 2 mRNA‑binding protein 3 (IGF2BP3)‑dependent autophagy. IGF2BP3 downregulation decreased the levels of apoptosis and inhibited autophagy induced by A/R challenge in primary cardiomyocytes. These results identified circRNA_101237 as a novel circRNA that regulates cardiomyocyte death and autophagy, and demonstrated that the circRNA‑101237/let‑7a‑5p/IGF2BP3 axis, which serves as a regulator of cardiomyocyte death, may be a potential therapeutic target for the management of cardiovascular diseases.