z-logo
open-access-imgOpen Access
Gene expression profile analysis on different stages of hypertrophic scarring in a rabbit ear model
Author(s) -
Ji Zhu,
Mingzhe Sun,
Yuchong Wang,
HongYan Bi,
Chunyu Xue
Publication year - 2020
Publication title -
experimental and therapeutic medicine
Language(s) - English
Resource type - Journals
eISSN - 1792-1015
pISSN - 1792-0981
DOI - 10.3892/etm.2020.8879
Subject(s) - kegg , biology , wnt signaling pathway , extracellular matrix , gene , gene expression , cell cycle , oncogene , signal transduction , microbiology and biotechnology , genetics , transcriptome
Hypertrophic scarring (HS) is one of the most common skin disorders. The study aimed to investigate the gene expression profile at day 10 (Stage 1), 21 (Stage 2), and day 40 (Stage 3) post-wounding of HS using RNA-sequencing of a scar model from rabbit ears. A total of 17,386 unigenes were annotated using the eggNOG Functional Category database. The study identified significantly differentially expressed genes (DEGs) including 261, 141, and 247 upregulated ones as well as 253, 272, and 58 downregulated ones in three stages respectively. The DEGs varies among each stage measured by Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. DEGs were enriched in 'immune system process' and 'proteinaceous extracellular matrix' in Stage 1, 'anatomical structure development', 'cell differentiation', 'cell adhesion'and some other terms in Stage 2, 'cancers', 'proteinaceous extracellular matrix' and 'signal transduction' in Stage 3. Furthermore, the Wnt signaling pathway was found to play a pivotal role in regression of HS. In conclusion, we revealed comprehensively the gene expression profiles during HS formation providing probable targets in HS treatment.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here