Characterization of MaltOBP1, a Minus-C Odorant-Binding Protein, From the Japanese Pine Sawyer Beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae)
Author(s) -
Fangmei Zhang,
Austin Merchant,
Zhibin Zhao,
Yunhui Zhang,
Jing Zhang,
Qingwen Zhang,
Qinghua Wang,
Xuguo Zhou,
Xiangrui Li
Publication year - 2020
Publication title -
frontiers in physiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.32
H-Index - 102
ISSN - 1664-042X
DOI - 10.3389/fphys.2020.00212
Subject(s) - monochamus alternatus , longhorn beetle , odorant binding protein , open reading frame , amino acid , biology , terpene , peptide sequence , microbiology and biotechnology , botany , biochemistry , insect , gene
Insect Odorant-Binding Proteins (OBPs) play crucial roles in the discrimination, binding and transportation of odorants. Herein, the full-length cDNA sequence of Minus-C OBP1 (MaltOBP1) from the Japanese pine sawyer beetle, Monochamus alternatus , was cloned by 3′ and 5′ RACE-PCR and analyzed. The results showed that MaltOBP1 contains a 435 bp open reading frame (ORF) that encodes 144 amino acids, including a 21-amino acid signal peptide at the N-terminus. The matured MaltOBP1 protein possesses a predicted molecular weight of about 14 kDa and consists of six α-helices, creating an open binding pocket, and two disulfide bridges. Immunoblotting results showed that MaltOBP1 was most highly expressed in antennae in both sexes, followed by wings and legs. Fluorescence assays demonstrated that MaltOBP1 protein exhibited high binding affinity with (R)-(+)-α-pinene, (−)-β-pinene, trans -caryophyllene, (R)-(+)-limonene and (–)-verbenone, which are the main volatile compounds of the pine tree. Our combined results suggest that MaltOBP1 plays a role in host seeking behavior in M. alternatus .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom