
A Precision Medicine Approach to Treating Alzheimer’s Disease Using Rosiglitazone Therapy: A Biomarker Analysis of the REFLECT Trials
Author(s) -
Sid O’Bryant,
Fan Zhang,
Melissa Petersen,
Leigh Johnson,
James Hall,
Robert A. Rissman
Publication year - 2021
Publication title -
journal of alzheimer's disease
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.677
H-Index - 139
eISSN - 1875-8908
pISSN - 1387-2877
DOI - 10.3233/jad-201610
Subject(s) - biomarker , rosiglitazone , medicine , clinical trial , disease , oncology , predictive value , receptor , biology , biochemistry
Background: The REFLECT trials were conducted to examine the treatment of mild-to-moderate Alzheimer’s disease utilizing a peroxisome proliferator-activated receptor gamma agonist. Objective: To generate a predictive biomarker indicative of positive treatment response using samples from the previously conducted REFLECT trials. Methods: Data were analyzed on 360 participants spanning multiple negative REFLECT trials, which included treatment with rosiglitazone and rosiglitazone XR. Support vector machine analyses were conducted to generate a predictive biomarker profile. Results: A pre-defined 6-protein predictive biomarker (IL6, IL10, CRP, TNFα, FABP-3, and PPY) correctly classified treatment response with 100%accuracy across study arms for REFLECT Phase II trial (AVA100193) and multiple Phase III trials (AVA105640, AV102672, and AVA102670). When the data was combined across all rosiglitazone trial arms, a global RSG-predictive biomarker with the same 6-protein predictive biomarker was able to accurately classify 98%of treatment responders. Conclusion: A predictive biomarker comprising of metabolic and inflammatory markers was highly accurate in identifying those patients most likely to experience positive treatment response across the REFLECT trials. This study provides additional proof-of-concept that a predictive biomarker can be utilized to help with screening and predicting treatment response, which holds tremendous benefit for clinical trials.