z-logo
open-access-imgOpen Access
Dentine sialophosphoprotein signal in dentineogenesis and dentine regeneration
Author(s) -
M M Liu,
W T Li,
Xin Xia,
Fu Ming Wang,
Mary MacDougall,
S Chen
Publication year - 2021
Publication title -
european cells and materials
Language(s) - English
Resource type - Journals
eISSN - 1473-2262
DOI - 10.22203/ecm.v042a04
Subject(s) - odontoblast , dentin sialophosphoprotein , microbiology and biotechnology , chemistry , rgd motif , adapter molecule crk , integrin , signal transduction , biology , biochemistry , receptor , signal transducing adaptor protein , dentin , materials science , composite material
Dentineogenesis starts on odontoblasts, which synthesise and secrete non-collagenous proteins (NCPs) and collagen. When dentine is injured, dental pulp progenitors/mesenchymal stem cells (MSCs) can migrate to the injured area, differentiate into odontoblasts and facilitate formation of reactionary dentine. Dental pulp progenitor cell/MSC differentiation is controlled at given niches. Among dental NCPs, dentine sialophosphoprotein (DSPP) is a member of the small integrin-binding ligand N-linked glycoprotein (SIBLING) family, whose members share common biochemical characteristics such as an Arg-Gly-Asp (RGD) motif. DSPP expression is cell- and tissue-specific and highly seen in odontoblasts and dentine. DSPP mutations cause hereditary dentine diseases. DSPP is catalysed into dentine glycoprotein (DGP)/sialoprotein (DSP) and phosphoprotein (DPP) by proteolysis. DSP is further processed towards active molecules. DPP contains an RGD motif and abundant Ser-Asp/Asp-Ser repeat regions. DPP-RGD motif binds to integrin αVβ3 and activates intracellular signalling via mitogen-activated protein kinase (MAPK) and focal adhesion kinase (FAK)-ERK pathways. Unlike other SIBLING proteins, DPP lacks the RGD motif in some species. However, DPP Ser-Asp/Asp-Ser repeat regions bind to calcium-phosphate deposits and promote hydroxyapatite crystal growth and mineralisation via calmodulin-dependent protein kinase II (CaMKII) cascades. DSP lacks the RGD site but contains signal peptides. The tripeptides of the signal domains interact with cargo receptors within the endoplasmic reticulum that facilitate transport of DSPP from the endoplasmic reticulum to the extracellular matrix. Furthermore, the middle- and COOH-terminal regions of DSP bind to cellular membrane receptors, integrin β6 and occludin, inducing cell differentiation. The present review may shed light on DSPP roles during odontogenesis.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here