
<p>Targeting IFN/STAT1 Pathway as a Promising Strategy to Overcome Radioresistance</p>
Author(s) -
Shuya Liu,
Saber Imani,
Youcai Deng,
Janak L. Pathak,
Qinglian Wen,
Yue Chen,
Jingbo Wu
Publication year - 2020
Publication title -
oncotargets and therapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.054
H-Index - 60
ISSN - 1178-6930
DOI - 10.2147/ott.s256708
Subject(s) - radioresistance , stat1 , cancer research , medicine , computational biology , chemistry , biology , immunology , interferon , radiation therapy
The interferon (IFN)-mediated activation of the Janus kinase (JAK)-signal transducer and activator of transcription 1 (STAT1) signaling is crucial for cell sensitivity to ionizing radiation. Several preclinical studies have reported that the IFN/STAT1 pathway mediates radioresistance in the tumor microenvironment by shielding the immune responses and activating survival signaling pathways. This review focuses on the oncogenic function of the IFN/STAT1 pathway, emphasizing the major signaling pathway in radiation sensitization. Furthermore, it highlights the possibility of mediatory roles of the IFN/STAT1 pathway as a prognostic therapeutic target in the modulation of resistance to radiotherapy and chemotherapy. MicroRNA involved in the regulation of the IFN/STAT1 pathway is also discussed. A better understanding of radiation-induced IFN/STAT1 signaling will open new opportunities for the development of novel therapeutic strategies, as well as define new approaches to enhance radio-immunotherapy efficacy in the treatment of various types of cancers.