z-logo
open-access-imgOpen Access
Systematic Review of Systemic and Neuraxial Effects of Acetaminophen in Preclinical Models of Nociceptive Processing
Author(s) -
Hiroshi Hoshijima,
Matthew A. Hunt,
Hiroshi Nagasaka,
Tony L. Yaksh
Publication year - 2021
Publication title -
journal of pain research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.888
H-Index - 49
ISSN - 1178-7090
DOI - 10.2147/jpr.s308028
Subject(s) - medicine , acetaminophen , allodynia , nociception , celecoxib , pharmacology , neuropathic pain , trpv1 , duloxetine , hyperalgesia , transient receptor potential channel , receptor , alternative medicine , pathology
Acetaminophen (APAP) in humans has robust effects with a high therapeutic index in altering postoperative and inflammatory pain states in clinical and experimental pain paradigms with no known abuse potential. This review considers the literature reflecting the preclinical actions of acetaminophen in a variety of pain models. Significant observations arising from this review are as follows: 1) acetaminophen has little effect upon acute nociceptive thresholds; 2) acetaminophen robustly reduces facilitated states as generated by mechanical and thermal hyperalgesic end points in mouse and rat models of carrageenan and complete Freund's adjuvant evoked inflammation; 3) an antihyperalgesic effect is observed in models of facilitated processing with minimal inflammation (eg, phase II intraplantar formalin); and 4) potent anti-hyperpathic effects on the thermal hyperalgesia, mechanical and cold allodynia, allodynic thresholds in rat and mouse models of polyneuropathy and mononeuropathies and bone cancer pain. These results reflect a surprisingly robust drug effect upon a variety of facilitated states that clearly translate into a wide range of efficacy in preclinical models and to important end points in human therapy. The specific systems upon which acetaminophen may act based on targeted delivery suggest both a spinal and a supraspinal action. Review of current targets for this molecule excludes a role of cyclooxygenase inhibitor but includes effects that may be mediated through metabolites acting on the TRPV1 channel, or by effect upon cannabinoid and serotonin signaling. These findings suggest that the mode of action of acetaminophen, a drug with a long therapeutic history of utilization, has surprisingly robust effects on a variety of pain states in clinical patients and in preclinical models with a good therapeutic index, but in spite of its extensive use, its mechanisms of action are yet poorly understood.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here