z-logo
open-access-imgOpen Access
Suppression of Hepatocyte Growth Factor Production Impairs the Ability of Adipose‐Derived Stem Cells to Promote Ischemic Tissue Revascularization
Author(s) -
Cai Liying,
Johnstone Brian H.,
Cook Todd G.,
Liang Zhong,
Traktuev Dmitry,
Cornetta Kenneth,
Ingram David A.,
Rosen Elliot D.,
March Keith L.
Publication year - 2007
Publication title -
stem cells
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.159
H-Index - 229
eISSN - 1549-4918
pISSN - 1066-5099
DOI - 10.1634/stemcells.2007-0388
Subject(s) - hepatocyte growth factor , biology , stem cell , progenitor cell , stromal cell , microbiology and biotechnology , adipose tissue , growth factor , cancer research , immunology , endocrinology , receptor , biochemistry
The use of adipose‐derived stem/stromal cells (ASCs) for promoting repair of tissues is a promising potential therapy, but the mechanisms of their action are not fully understood. We and others previously demonstrated accelerated reperfusion and tissue salvage by ASCs in peripheral ischemia models and have shown that ASCs secrete physiologically relevant levels of hepatocyte growth factor (HGF) and vascular endothelial growth factor. The specific contribution of HGF to ASC potency was determined by silencing HGF expression. RNA interference was used to downregulate HGF expression. A dual‐cassette lentiviral construct expressing green fluorescent protein (GFP) and either a small hairpin RNA specifically targeted to HGF mRNA (shHGF) or an inactive control sequence (shCtrl) were used to stably transduce ASCs (ASC‐shHGF and ASC‐shCtrl, respectively). Transduced ASC‐shHGF secreted >80% less HGF, which led to a reduced ability to promote survival, proliferation, and migration of mature and progenitor endothelial cells in vitro. ASC‐shHGF were also significantly impaired, compared with ASC‐shCtrl, in their ability to promote reperfusion in a mouse hindlimb ischemia model. The diminished ability of ASCs with silenced HGF to promote reperfusion of ischemic tissues was reflected by reduced densities of capillaries in reperfused tissues. In addition, fewer GFP + cells were detected at 3 weeks in ischemic limbs of mice treated with ASC‐shHGF compared with those treated with ASC‐shCtrl. These results indicate that production of HGF is important for the potency of ASCs. This finding directly supports the emerging concept that local factor secretion by donor cells is a key element of cell‐based therapies. Disclosure of potential conflicts of interest is found at the end of this article.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here