Open Access
Study of Ratio Variation of Binary Components of Cross Linking Agent on Extent of Polymerization and Mechanical Properties of Polyurethane Composites
Author(s) -
Anita Sharma,
S. Sharma,
Ashu Rani
Publication year - 2019
Publication title -
asian journal of chemistry/asian journal of chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.145
H-Index - 34
eISSN - 0975-427X
pISSN - 0970-7077
DOI - 10.14233/ajchem.2019.22202
Subject(s) - polyurethane , composite number , propane , composite material , polymerization , curing (chemistry) , materials science , polymer , ultimate tensile strength , diol , fly ash , elastomer , chemistry , polymer chemistry , organic chemistry
Polyethylene glycol based polyurethane polymer and its fly ash reinforced polyurethane composite were prepared by optimizing the concentration ratio of binders, cross linking agents and curing agents. The components ratio of cross linking agents with the same hydroxyl functionalities i.e. 1,4-butane diol and 1,1,1-trimethylol propane affects the mechanical properties of polymer. The extent of polymerization of polyurethane matrix and fly ash reinforced polyurethane composite was found to be independent of the component ratio of cross linking agents. PEG based polyurethane polymer and their fly ash-reinforced composite can be synthesized at particular ratio by mass of cross linkingagents i.e. 0.5 keeping constant w/w ratio 3:2 of binders and curing agents. Effect of w/w ratio variation of cross linking agents on the extent of polymerization has been studied through SEM technique. Cross linking agents, curing agents and polyurethane composite have been characterized by IR spectra. Effect of w/w ratio variation of binary components 1,4-butane diol and 1,1,1-trimethylol propane of cross linking agents on the mechanical properties of fly ash-reinforced polyurethane composite has been studied by evaluating tensile strength and Young modulus of composite material by universaltesting machine. Hardness of fly ash-reinforced polyurethane composite with different ratio of 1,4-butane diol and 1,1,1-trimethylol propane of cross linking agents was evaluated by durometer