Open Access
Slc6a13 Deficiency Attenuates Pasteurella multocida Infection-Induced Inflammation via Glycine-Inflammasome Signaling
Author(s) -
He Fang,
Qiu Yangyang,
Wu Xiaoyan,
Xia Yaoyao,
Yang Liu,
Wu Chenlu,
Li Pan,
Zhang Rui,
Fang Rendong,
Li Nengzhang,
Peng Yuanyi
Publication year - 2022
Publication title -
journal of innate immunity
Language(s) - Uncategorized
Resource type - Journals
SCImago Journal Rank - 2.078
H-Index - 64
eISSN - 1662-8128
pISSN - 1662-811X
DOI - 10.1159/000525089
Subject(s) - research article
AbstractWe have previously demonstrated that Slc6a13-deficient (Slc6a13 −/− ; KO) mice are resistant to P . multocida infection, which might be in connection with macrophage-mediated inflammation; however, the specific metabolic mechanism is still enigmatic. Here we reproduce the less sensitive to P . multocida infection in overall survival assays as well as reduced bacterial loads, tissue lesions, and inflammation of lungs in KO mice. The transcriptome sequencing analysis of wild-type (WT) and KO mice shows a large number of differentially expressed genes that are enriched in amino acid metabolism by functional analysis. Of note, glycine levels are substantially increased in the lungs of KO mice with or without P . multocida infection in comparison to the WT controls. Interestingly, exogenous glycine supplementation alleviates P . multocida infection-induced inflammation. Mechanistically, glycine reduces the production of inflammatory cytokines in macrophages by blocking the activation of inflammasome (NALP1, NLRP3, NLRC4, AIM2, and Caspase-1). Together, Slc6a13 deficiency attenuates P . multocida infection through lessening the excessive inflammatory responses of macrophages involving glycine-inflammasome signaling.