
The Paracrine Effect of Adipose-Derived Stem Cells Orchestrates Competition between Different Damaged Dermal Fibroblasts to Repair UVB-Induced Skin Aging
Author(s) -
Qin Feng,
Jiuzuo Huang,
Wenchao Zhang,
Mingzi Zhang,
Zhenjiang Li,
Loubin Si,
Xiao Long,
Xiaojun Wang
Publication year - 2020
Publication title -
stem cells international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.205
H-Index - 64
eISSN - 1687-9678
pISSN - 1687-966X
DOI - 10.1155/2020/8878370
Subject(s) - photoaging , paracrine signalling , skin aging , stem cell , oxidative stress , cancer research , microbiology and biotechnology , medicine , biology , dermatology , receptor
Background Human dermal fibroblasts (HDFs) are the primary cells in skin and are associated with UVB-induced skin photoaging. Adipose-derived stem cells (ASCs) have been proposed as a treatment for skin aging. The goal of this study was to investigate paracrine mechanisms by which ASCs repair HDFs damage from UVB exposure.Methods ASCs were cocultured with UVB-irradiated and nonirradiated HDFs. We compared HDF senescence, proliferation, migration, oxidative stress, and cytokine expression. In a nude mouse UVB-induced photoaging model, ASCs were injected subcutaneously, and skin samples were collected weekly between postoperative weeks 3 through 7. Histological analysis, PCR, ELISA, and immunohistochemistry were used to analyze the effect of ASCs.Results Compared with UVB-irradiated HDFs, nonirradiated HDFs showed higher proliferation and migration, reduced apoptosis, and fewer senescent cells when cocultured with ASCs. The expression of extracellular matrix-related cytokines was also regulated by ASCs. In addition, ASCs effectively reversed UVB-induced skin photoaging in vivo. We propose that ASCs more robustly coordinate healthy HDFs than UVB-damaged HDFs to repair aging skin.Conclusions ASCs improved the function of both UVB-damaged and healthy HDFs through paracrine effects. However, the impact of ASCs on healthy HDFs was greater than UVB-damaged HDFs. These findings help to elucidate the underlying mechanisms of the skin rejuvenation effect of ASCs.