
Visualization of Gas Diffusion-Sorption in Coal: A Study Based on Synchrotron Radiation Nano-CT
Author(s) -
Yingfeng Sun,
Yixin Zhao,
Hongwei Zhang,
Cun Zhang
Publication year - 2020
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2020/8835848
Subject(s) - sorption , diffusion , desorption , coalbed methane , gaseous diffusion , coal , adsorption , materials science , methane , microstructure , thermodynamics , petroleum engineering , chemistry , coal mining , geology , composite material , physics , organic chemistry , electrode
Gas diffusion-sorption is a critical step in coalbed methane (CBM) exploitation and carbon dioxide sequestration. Because of the particularity of gas physical properties, it is difficult to visualize the gas diffusion-sorption process in coal by experimental methods. Due to the limitation of experimental approaches to image the three-dimensional coal pore structure, it is impossible to obtain the three-dimensional pore structure images of coal. As a result, the visualization of gas diffusion-sorption in coal pore structure by numerical ways is impossible. In this study, gas diffusion coefficients were firstly estimated by experiments. Then, a gas diffusion-sorption coupled model was developed which can be applied to the nanoscale geometry imaged by synchrotron radiation nano-CT. The dynamic process of gas diffusion and ad-/desorption in the nanoscale microstructure of coal was visualized by the developed gas diffusion-adsorption coupled model and the numerical simulation based on MATLAB. The simulation results show a good agreement with the experimental results. The gas diffusion-sorption coupled model and numerical method can help to investigate the effect of microstructure on gas diffusion and ad-/desorption and provides a possibility to investigate the multiscale gas transportation and adsorption in coal pore-fracture system.