z-logo
open-access-imgOpen Access
Nutritional Preconditioning of Apigenin Alleviates Myocardial Ischemia/Reperfusion Injury via the Mitochondrial Pathway Mediated by Notch1/Hes1
Author(s) -
Huang Huang,
Songqing Lai,
Yong Luo,
Qin Wan,
Qicai Wu,
Li Wan,
Wanghong Qi,
Jichun Liu
Publication year - 2019
Publication title -
oxidative medicine and cellular longevity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.494
H-Index - 93
eISSN - 1942-0900
pISSN - 1942-0994
DOI - 10.1155/2019/7973098
Subject(s) - mitochondrial permeability transition pore , chemistry , reactive oxygen species , apigenin , superoxide dismutase , pharmacology , malondialdehyde , lactate dehydrogenase , reperfusion injury , glutathione peroxidase , biochemistry , cytochrome c , oxidative stress , mitochondrion , apoptosis , antioxidant , ischemia , biology , medicine , programmed cell death , enzyme , flavonoid
Apigenin (Api), a natural flavone found in high amounts in several herbs, has shown potent cardioprotective effects in clinical studies, although the underlying mechanisms are not clear. We hypothesized that Api protects the myocardium from simulated ischemia/reperfusion (SI/R) injury via nutritional preconditioning (NPC). Rats fed with Api-containing food showed improvement in cardiac functions; lactate dehydrogenase (LDH) and creatine phosphokinase (CPK) activities; infarct size; apoptosis rates; malondialdehyde (MDA) levels; caspase-3, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) activities; and ferric reducing antioxidant power (FRAP) compared to those fed standard chow following SI/R injury. In addition, Api pretreatment significantly improved the viability, decreased the LDH activity and intracellular reactive oxygen species (ROS) generation, alleviated the loss of mitochondrial membrane potential (MMP), prevented the opening of the mitochondrial permeability transition pore (mPTP), and decreased the caspase-3 activity, cytochrome c (Cyt C) release, and apoptosis induced by SI/R in primary cardiomyocytes. Mechanistically, Api upregulated Hes1 expression and was functionally neutralized by the Notch1 γ -secretase inhibitor GSI, as well as the mPTP opener atractyloside (Atr). Taken together, Api protected the myocardium against SI/R injury via the mitochondrial pathway mediated by the Notch1/Hes1 signaling pathway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here