Open Access
Hybrid Differential Evolution-Particle Swarm Optimization Algorithm for Multiobjective Urban Transit Network Design Problem with Homogeneous Buses
Author(s) -
Ahmed Tarajo Buba,
Lai Soon Lee
Publication year - 2019
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2019/5963240
Subject(s) - particle swarm optimization , benchmark (surveying) , differential evolution , mathematical optimization , computer science , set (abstract data type) , hybrid algorithm (constraint satisfaction) , multi objective optimization , network planning and design , optimization problem , mathematics , constraint logic programming , computer network , geodesy , stochastic programming , constraint programming , programming language , geography
This paper considers an urban transit network design problem (UTNDP) that deals with construction of an efficient set of transit routes and associated service frequencies on an existing road network. The UTNDP is an NP-hard problem, characterized by a huge search space, multiobjective nature, and multiple constraints in which the evaluation of candidate route sets can be both time consuming and challenging. This paper proposes a hybrid differential evolution with particle swarm optimization (DE-PSO) algorithm to solve the UTNDP, aiming to simultaneously optimize route configuration and service frequency with specific objectives in minimizing both the passengers’ and operators’ costs. Computational experiments are conducted based on the well-known benchmark data of Mandl’s Swiss network and a large dataset of the public transport system of Rivera City, Northern Uruguay. The computational results of the proposed hybrid algorithm improve over the benchmark obtained in most of the previous studies. From the perspective of multiobjective optimization, the proposed hybrid algorithm is able to produce a diverse set of nondominated solutions, given the passengers’ and operators’ costs are conflicting objectives.