
Treatment with a Zinc Metalloprotease Purified from Bothrops moojeni Snake Venom (BmooMP-Alpha-I) Reduces the Inflammation in an Experimental Model of Dextran Sulfate Sodium-Induced Colitis
Author(s) -
Maraísa Cristina Silva,
Helioswilton SalesCampos,
Carlo José Freire Oliveira,
Tamires Lopes Silva,
Flávia Batista Ferreira França,
Fábio de Oliveira,
Tiago Wilson Patriarca Mineo,
José Roberto Mineo
Publication year - 2019
Publication title -
mediators of inflammation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.37
H-Index - 97
eISSN - 1466-1861
pISSN - 0962-9351
DOI - 10.1155/2019/5195134
Subject(s) - colitis , inflammation , in vivo , bothrops , pharmacology , snake venom , alpha (finance) , cytokine , immunology , medicine , chemistry , biology , enzyme , biochemistry , surgery , construct validity , microbiology and biotechnology , patient satisfaction
It has been described that the metalloprotease BmooMP-alpha-I purified from Bothrops moojeni snake venom is able to hydrolyze the TNF molecule. However, this observation has been based mainly on in vitro investigation, in addition to molecular modeling and docking approaches. Considering that there is no in vivo study to demonstrate the biological effects of this enzyme, the major aim to the present work was to investigate whether the BmooMP-alpha-I has any anti-inflammatory efficacy by setting up a murine experimental design of colitis induced by dextran sulfate sodium (DSS). For this purpose, C57BL/6 mice were divided into six groups, as follows: (i) animals without intestinal inflammation, (ii) animals without intestinal inflammation treated with BmooMP-alpha-I (50 μ g/animal/day), and (iii) animals with intestinal inflammation induced by 3% of DSS, (iv) mice with intestinal inflammation induced by DSS and treated with BmooMP-alpha-I enzyme at the 50, 25, or 12.5 μ g/animal/day dosages by intraperitoneal route. Clinical signs of colitis were observed daily for calculating the morbidity scores, cytokine measurements, and histological features. We observed that the animals treated with different doses of the enzyme presented a remarkable improvement of colitis signs, as confirmed by a significant increase of the intestine length in comparison to the DSS group. Also, no difference was observed between the groups treated with the enzyme or vehicle, as the colon length of these animals was slightly lower than that of the group of healthy animals, without induction of intestinal inflammation. The cytokine quantification in supernatants of intestinal tissue homogenates showed a significant reduction of 38% in IFN-gamma levels, when the animals were treated with 50 μ g of the BmooMP-alpha-I compared to the animals receiving DSS only. A significant reduction of 39% in TNF levels was also observed in all doses of treatment with BmooMP-alpha-I, in addition to a significant reduction of 35% in the amount of IL-12p40. Histological examinations revealed that the BmooMP-alpha-I 50 μ g treated group preserved colon architecture and goblet cells and reduced the ulcer area, when compared with DSS mice, which showed typical inflammatory changes in tissue architecture, such as ulceration, crypt dilation, loss of tissue architecture, and goblet cell depletion, accompanied by a significant cell infiltration. In conclusion, our results suggest that the improvement of clinical scores and histological findings related to BmooMP-alpha-I treatment in this experimental model could be attributed to the metalloprotease ability to modulate cytokine production locally at the inflamed intestine. These findings highlight the potential anti-inflammatory role and effectiveness of this enzyme as a therapeutic alternative in this type of immunopathological condition.