
Nonlinear Quantum-Inspired Weighting Structuring Element for Bearing Impulse Response Signal Processing
Author(s) -
Guoquan Ren,
Yanlong Chen,
Chengzhu Li,
Ziyang Cheng
Publication year - 2019
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2019/3740586
Subject(s) - nonlinear system , impulse (physics) , weighting , bearing (navigation) , amplitude , impulse response , computer science , quantum , algorithm , mathematics , control theory (sociology) , mathematical analysis , acoustics , physics , artificial intelligence , quantum mechanics , control (management)
In order to solve the disadvantage of conventional structuring element (CSE) where amplitude does not change in accordance with the analyzed signal, the quantum theory is combined and a nonlinear quantum-inspired weighting structuring element (NQWSE) is proposed. The NQWSE which is utilized to extract the bearing impulse response signal can adjust its amplitude according to the mechanical signal. Firstly, after constructing the multiple quantum bits system for signals, the mapping method which is employed to map the quantum space to the real space is presented and the parameters of the mapping method are set. The nonlinear amplitude probability is calculated based on the stochastic characteristics of the bearing signals, while the dynamic amplitude is calculated based on the local feature of the bearing signals in a subwindow. Then the mathematical formula of NQWSE is derived by incorporating the mathematical expectation into the quantum theory and the mapping method. Finally, the NQWSE is applied to extract the fault information of a failure bearing. The results reveal that NQWSE can extract the bearing impulse response signals exactly.