
Influence of Energy State of Montmorillonite Interlayer Cations on Organic Intercalation
Author(s) -
Limei Wu,
Shiyue Cao,
Guocheng Lv
Publication year - 2018
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2018/3489720
Subject(s) - intercalation (chemistry) , montmorillonite , materials science , thermal stability , chemical physics , chemical engineering , molecular dynamics , inorganic chemistry , computational chemistry , chemistry , composite material , engineering
It is well known that the intercalation of montmorillonite (Mt) with organic cations is a fast process. During the intercalation, the interaction between the original cations and the structure layer of Mt keeps changing, and the basal spacing of Mt keeps increasing until an organic environment has been built in the interlayer. Many properties of Mt also change during the intercalation, such as hydrophobic or hydrophilic property and thermal stability. In this research, the impact of intercalation on the properties of Mt was studied by investigating the change in basal spacing and energy that coordinates the interlayer cations during the intercalation of Mt with organic cations. The interaction between interlayer cations and the layers in the Mt structure and the change in the system energy were obtained by using molecular dynamics simulation. All the experiment and calculation results provide a theoretical proof in organic intercalation mechanism.