In vitro antibacterial activity of DU-6859a, a new fluoroquinolone
Author(s) -
Tamiko Nakane,
Shizuko Iyobe,
Kenichi Sato,
S Mitsuhashi
Publication year - 1995
Publication title -
antimicrobial agents and chemotherapy
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.07
H-Index - 259
eISSN - 1070-6283
pISSN - 0066-4804
DOI - 10.1128/aac.39.12.2822
Subject(s) - antibacterial agent , in vitro , antibacterial activity , microbiology and biotechnology , chemistry , pharmacology , antibiotics , medicine , biology , bacteria , biochemistry , genetics
The in vitro antibacterial activity of DU-6859a, a new fluoroquinolone, against a wide variety of clinical isolates was evaluated and compared with those of tosufloxacin, ofloxacin, ciprofloxacin, and sparfloxacin. DU-6859a showed potent broad-spectrum activity against gram-positive, gram-negative, and anaerobic bacteria, and its activity was greater than those of the control quinolones. By comparison of MICs at which 90% of strains are inhibited, DU-6859a had potent activity against bacteria resistant to the control quinolones. The time-killing curves of quinolones showed that the number of viable cells decreased rapidly during 2 to 4 of incubation, and regrowth was not seen even after 8 h incubation. At a concentration of four times the MIC, the frequencies of appearance of spontaneous mutants of Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa resistant to DU-6859a were < or = 4.0 x 10(-9) to 1.9 x 10(-8). The 50% inhibitory concentrations of DU-6859a were 0.86 and 1.05 micrograms/ml for the supercoiling activities of DNA gyrases isolated from E. coli and P. aeruginosa, respectively. The rank order of the 50% inhibitory concentrations observed for both DNA gyrases roughly paralleled the MICs.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom