Premium
Correlation of Scar in Cardiac MRI and High‐Resolution Contact Mapping of Left Ventricle in a Chronic Infarct Model
Author(s) -
THAJUDEEN ANEES,
JACKMAN WARREN M.,
STEWART BRIAN,
COKIC IVAN,
NAKAGAWA HIROSHI,
SHEHATA MICHAEL,
AMORN ALLEN M.,
KALI AVINASH,
LIU EZH,
HARLEV DORON,
BENNETT NATHAN,
DHARMAKUMAR ROHAN,
CHUGH SUMEET S.,
WANG XUNZHANG
Publication year - 2015
Publication title -
pacing and clinical electrophysiology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.686
H-Index - 101
eISSN - 1540-8159
pISSN - 0147-8389
DOI - 10.1111/pace.12581
Subject(s) - medicine , ventricle , endocardium , ventricular tachycardia , magnetic resonance imaging , scars , ablation , infarction , catheter ablation , myocardial infarction , cardiology , nuclear medicine , radiology , pathology
Background Endocardial mapping for scars and abnormal electrograms forms the most essential component of ventricular tachycardia ablation. The utility of ultra‐high resolution mapping of ventricular scar was assessed using a multielectrode contact mapping system in a chronic canine infarct model. Methods Chronic infarcts were created in five anesthetized dogs by ligating the left anterior descending coronary artery. Late gadolinium‐enhanced magnetic resonance imaging (LGE MRI) was obtained 4.9 ± 0.9 months after infarction, with three‐dimensional (3D) gadolinium enhancement signal intensity maps at 1‐mm and 5‐mm depths from the endocardium. Ultra‐high resolution electroanatomical maps were created using a novel mapping system (Rhythmia Mapping System, Rhythmia Medical/Boston Scientific, Marlborough, MA, USA) Rhythmia Medical, Boston Scientific, Marlborough, MA, USA with an 8.5F catheter with mini‐basket electrode array (64 tiny electrodes, 2.5‐mm spacing, center‐to‐center). Results The maps contained 7,754 ± 1,960 electrograms per animal with a mean resolution of 2.8 ± 0.6 mm. Low bipolar voltage (<2 mV) correlated closely with scar on the LGE MRI and the 3D signal intensity map (1‐mm depth). The scar areas between the MRI signal intensity map and electroanatomic map matched at 87.7% of sites. Bipolar and unipolar voltages, compared in 592 electrograms from four MRI‐defined scar types (endocardial scar, epicardial scar, mottled transmural scar, and dense transmural scar) as well as normal tissue, were significantly different. A unipolar voltage of <13 mV correlated with transmural extension of scar in MRI. Electrograms exhibiting isolated late potentials (ILPs) were manually annotated and ILP maps were created showing ILP location and timing. ILPs were identified in 203 ± 159 electrograms per dog (within low‐voltage areas) and ILP maps showed gradation in timing of ILPs at different locations in the scar. Conclusions Ultra‐high resolution contact electroanatomical mapping accurately localizes ventricular scar and abnormal myocardial tissue in this chronic canine infarct model. The high fidelity electrograms provided clear identification of the very low amplitude ILPs within the scar tissue and has the potential to quickly identify targets for ablation.