z-logo
open-access-imgOpen Access
Metabolic perturbations in Welsh Ponies with insulin dysregulation, obesity, and laminitis
Author(s) -
Jacob Sarah I.,
Murray Kevin J.,
Rendahl Aaron K.,
Geor Raymond J.,
Schultz Nichol E.,
McCue Molly E.
Publication year - 2018
Publication title -
journal of veterinary internal medicine
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.356
H-Index - 103
eISSN - 1939-1676
pISSN - 0891-6640
DOI - 10.1111/jvim.15095
Subject(s) - laminitis , medicine , metabolomics , insulin , metabolome , metabolite , endocrinology , obesity , diabetes mellitus , metabolic syndrome , insulin resistance , physiology , bioinformatics , biology , horse , paleontology
Background Metabolomics, the study of small‐molecule metabolites, has increased understanding of human metabolic diseases, but has not been used to study equine metabolic syndrome (EMS). Objectives (1) To examine the serum metabolome of Welsh Ponies with and without insulin dysregulation before and during an oral sugar test (OST). (2) To identify differences in metabolites in ponies with insulin dysregulation, obesity, or history of laminitis. Animals Twenty Welsh Ponies (mean ± SD; 13.8 ± 9.0 years) classified as non‐insulin dysregulated [CON] (n = 10, insulin < 30 mU/L) or insulin dysregulated [ID] (n = 10, insulin > 60 mU/L) at 75 minutes after administration of Karo syrup, obese (n = 6) or nonobese (n = 14), and history of laminitis (n = 9) or no history of laminitis (n = 11). Methods Case‐control study. Metabolomic analysis was performed on serum obtained at 0 minutes (baseline) and 75 minutes during the OST. Data were analyzed with multivariable mixed linear models with significance set at P  ≤ .05. Results Metabolomic analysis of 646 metabolites (506 known) detected significant metabolite differences. At baseline, 55 metabolites (insulin response), 91 metabolites (obesity status), and 136 metabolites (laminitis history) were different. At 75 minutes, 51 metabolites (insulin response), 102 metabolites (obesity status), and 124 metabolites (laminitis history) were different. Conclusions and Clinical Importance Use of metabolomics could have diagnostic utility for early detection of EMS and provide new knowledge regarding the pathophysiology of metabolic perturbations associated with this condition that might lead to improved clinical management.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here