Premium
The Molecular Mechanisms of Neural Flow Coupling: A New Concept
Author(s) -
Nakada Tsutomu
Publication year - 2015
Publication title -
journal of neuroimaging
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.822
H-Index - 64
eISSN - 1552-6569
pISSN - 1051-2284
DOI - 10.1111/jon.12219
Subject(s) - extracellular , biophysics , aquaporin 4 , chemistry , biochemistry , biology
The phenomenon known as neural flow coupling (NFC) occurs at the capillary level where there are no known pressure controlling structures. Recent developments in advanced magnetic resonance imaging technologies have made possible in vivo direct investigations of water physiology that have shed new insight on the water dynamics of the cortical pericapillary space and their complex functionality in relation to NFC. Neural activities initiate a chain of events that ultimately affect NFC. First, neural activities generate extracellular acidification. Extracellular acidosis in turn produces inhibition of aquaporin‐4 (AQP‐4) located at the end feet of pericapillary astrocytes, the water channel which regulates water influx into the pericapillary space and, hence, interstitial flow. Reduction of pericapillary water pressure results in a negative balance between pericapillary and intraluminal capillary pressure, allowing for capillary caliber expansion. Proton permeability through the tight junctions of the blood brain barrier is significantly high owing to the Grotthuss proton “tunneling” mechanism and, therefore, carbonic anhydrase (CA) type IV (CA‐IV) anchored to the luminal surface of brain capillaries functions as scavenger of extracellular protons. CA‐IV inhibition by acetazolamide or carbon dioxide results in the accumulation of extracellular protons, causing AQP‐4 inhibition and a secondary increase in rCBF.