z-logo
Premium
The effect of hypoxia on the proliferation capacity of dermal papilla cell by regulating lactate dehydrogenase
Author(s) -
Ye Jun,
Tang Xiaoli,
Long Yunzhu,
Chu Zhou,
Zhou Qing,
Lin Bojie
Publication year - 2021
Publication title -
journal of cosmetic dermatology
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.626
H-Index - 44
eISSN - 1473-2165
pISSN - 1473-2130
DOI - 10.1111/jocd.13578
Subject(s) - lactate dehydrogenase , cell growth , gene knockdown , hypoxia (environmental) , viability assay , stem cell , cell , microbiology and biotechnology , hair follicle , biology , chemistry , apoptosis , biochemistry , enzyme , organic chemistry , oxygen
Hypoxia is of great significance for stem cells to maintain the proliferation and differentiation capacity. As a specialized mesenchymal component of the hair follicle (HF), the dermal papilla cell (DPC) not only regulates HF cycle, but also plays a pivotal role in differentiating hair follicle stem cell(HFSC) into HF. However, whether hypoxia could affect DPCs on proliferation or metabolism remains unclear. In our study, DPCs were cultured in normoxia (20%O 2 ) or hypoxia (5%O 2 ). Cell viability assays were performed, and lactate dehydrogenase (LDH) activity and lactate level in DPCs were detected. After that, LDH was overexpressed or knocked down in DPCs; then, the expression of protein markers (ALP, Ki‐67) was assessed by Western blotting, and cell proliferation was also detected after overexpression or knockdown of LDH. Hypoxia did show positive effect on proliferation of DPCs. The LDH activity of DPCs cultured under hypoxic condition was significantly higher than that of cultured under normoxic condition. Overexpression of LDH significantly up‐regulates the expression of ALP and Ki‐67 compared with knockdown and negative control. Cell proliferation was also promoted in DPCs with elevated LDH. Our findings showed that the proliferation activity of DPCs could be stimulated under hypoxia. Meanwhile, LDH plays an important role in maintaining the activity of DPCs in hypoxic condition.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here